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Abstract. In this work, the modeling of free radical polymerization of 

styrene is performed using two approaches: phenomenological and empirical. In 

the last case, artificial neural networks are used, applying two working strategies. 

First, a single model with three outputs (monomer conversion, numerical 

molecular weight and gravimetrical molecular weights) based on time, 

temperature and initial concentration of the initiator (model inputs) was 

determined. Due to the unacceptable performance results for the molecular 

weights, a second strategy is developed, modelling each output, separately, as 

function of the three inputs. Different artificial neural network topologies were 

tested, the two hidden layer networks performing the best for all the outputs. 
 

Keywords: styrene; modelling; prediction; artificial neural networks. 

  

 
1. Introduction 

 

Polystyrene is one of the most well-known and intensively studied 

polymers and is predominantly obtained by a radical mechanism under the 

action of heat, with or without initiator.  
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The block polymerization of styrene has the ability to produce 

polystyrene of superior optical clarity and outstanding electrical properties. 

Mass polymerization allows the production of blocks, bars and transparent 

plates, without pressing, which is important for the manufacture of parts for the 

high-frequency electrochemical industry. On the other hand, bulk 

polymerization of styrene has a series of disadvantages due to its high viscosity 

and reduced thermal conductivity of the formed polymer. Since the 

polymerization process is strongly exothermic and the polystyrene is a bad heat 

conductor, inside the block, local overheating zones are formed which lead to a 

different rate of polymerization and, therefore, to a different degree of 

polymerization in the various portions of the block.  

In this work, free radical polymerization of styrene, conducted in mass, 

is approached by simulation. The mathematical modelling takes into account the 

usual stages of radical polymerization: initiation, propagation, termination by 

recombination and chain transfer to monomer. 

The initiation of the process can be realized chemically, but at higher 

temperatures (above 100C) one should also consider the thermal initiation. 

A major feature of the homogeneous free radical polymerization is the 

important increase of the mass reaction viscosity with monomer conversion. As 

a consequence, diffusional effects (gel and glass effects) appear, producing a 

deviation from normal kinetic and significant changes of mass and heat transfer.  

In the literature, there are many approaches concerning the modeling 

of styrene polymerization, but their domain is limited because the great 

operational difficulties represented by the complex reaction kinetics, inherent 

process nonlinearities and the continuous demand for running these reactors at 

varying operating conditions needed to produce different polymer grades. The 

usual practice for operating polymerization reactors is to optimize the reactor 

temperature profile since the end use properties of the product polymer 

depend highly on temperature. For instance, Hosen et al. (2011) implemented 

and used experimentally a neural network-model predictive control (NN-

MPC) algorithm to control the temperature of a polystyrene (PS) batch 

reactors. The obtained predictions are then introduced in a numerical 

optimization procedure which attempts to minimize a specified cost function 

to calculate a suitable control signal at each sample instant. It was concluded 

that the NN-MPC performance is superior to the conventional PID controller, 

especially during process startup. 

Hossen and Hussain (2012) developed an optimization procedure for a 

polystyrene batch reactor based on a hybrid model – a first principle-Neural 

network model used to design the controller which implements the optimum 

temperature profile. 

The prediction interval (PI)-based modelling techniques are introduced 

and applied to capture the nonlinear dynamics of a polystyrene batch reactor 

system (Hosen et al., 2014). Simple neural networks are designed for modeling, 
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but their parameters are adjusted using simulated annealing optimization 

technique with the goal to minimize the PI-based cost function. 

 Soft sensing technology is usually applied for determining polymer 

molecular weight distribution (MWD) because of the lack of the  on-line 

measurement instrument. The orthogonal polynomials combined with neural 

networks, i.e. soft sensing model, was used to simulate the real-time changes of 

MWD, using, as measurable variables, average molecular weight and low-order 

moment statistics (Ding et al., 2015). 

The main goal of this paper is to elaborate and check a complete model 

for bulk or suspension polymerization of styrene. A comparative approach is 

presented, developing a phenomenological model which include diffusional 

effects and neural networks for modeling the monomer conversion and polymer 

molecular weights as function of initiator concentration, time and reaction 

temperature. It was proved that both models are satisfactory, emphasizing their 

advantages and disadvantages and, also, conditions in which their use is 

recommended. 

 

2. Modelling Methodologies 
 

2.1. Phenomenological Model 
 

The styrene bulk polymerization in the presence of a single initiator can 

be represented by the following reactions: 
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In the above kinetic diagram, I is the initiator, R
*
 – primary radical, M – 

monomer, *
nP – macro-radical with n monomer units, Dn – dead chain with n 

monomer units, kd, ki, kiterm, kp, ktm, ktc – rate constants for decomposition of 



70                                            Luciana Ghiba et al. 
 

 

initiator, chemical initiation, thermal initiation, propagation, chain transfer to 

monomer and termination by recombination, respectively. 

 From the kinetic diagram one can write the balance equations for the 

monomer and initiator concentrations (M, I) and for the distribution moments of 

macro-radicals (i) and of dead polymer (i, i = 0,1,2). 
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As the polymerization proceeds, the constants ktc and kp decrease due to 

the diffusional constraints, gel and glass effects, respectively Chiu et al. (1983) 

proposed for these constants the following models: 
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where: 
pt θθ EE , are activation energies for t and p; T – polymerization 

temperature and Tgp – glass transition temperature of the polymer; t, p – 

characteristic migration times; 
0
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– pre-exponential factors for tc and p, 

C1, C2 – constants, kt0, kp0 – termination and propagation rate constants in the 

absence of gel and glass effects. 

For the rate constant of chain transfer to monomer, a similar decrease to 

that of propagation rate constant was proposed (Chiu et al., 1983) because both 

reactions involve the same diffusion mechanism – the monomer molecules 

migrating toward the growing macro-radicals. 
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Simulations were conducted in Matlab, using an own software program. 
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2.2. Neural Network Modelling 

 

An alternative to classical modeling is represented by an empirical 

method - artificial neural network (ANN). 

Neural networks, through their efficient representative – feed-forward 

neural network – are mostly used because of their simplicity, flexible structure, 

good quality of the predictions, and the capability of acting as universal 

approximator.  

Particularly for polymerization processes, characterized by complex 

reaction mechanisms and models, difficult to develop and solve, neural 

network modeling becomes a viable option, given that it does not require 

extensive knowledge of process phenomenology. Only input-output data, 

representative in number and value range, are required to achieve 

satisfactory results.  

In this work, three input variables were considered: initiator 

concentration, I0, with values in the range 20-60 mol/m
3
, reaction temperature, 

T, in the domain 70-120C and polymerization time, t, 0-5000 min. Each 

simulation had specific intervals for the above parameters, depending of the 

values for temperature and initiator amount, so that complete curves for 

conversion and molecular be obtained. The outputs of the neural network 

models were: monomer conversion, x, numerical molecular weight, Mn and 

gravimetrical molecular weight, Mw. Two types of modeling were conducted 

in order to obtain better results – MLP(3:x:3) and MLP(3:x:1) were 

developed,  meaning multilayer perceptron with three outputs, attempting to 

model  all the three variables simultaneously and networks with a single 

output variable, when separate models were determined for each of the 

considered variables (x, Mn, Mw). In both cases, neural networks with one or 

two intermediate layers and different number of hidden neurons were 

designed. 

From simulations, a large database is obtained with more than 10 000 

data, making difficult their handling. A specific procedure was added in a 

Matlab software where a variable step is considered, with small values during 

the gel effects and higher in the other intervals, aiming the precise reproduction 

of the effects controlled by diffusion. This resulted in a dataset of about 4000 

values which means a reasonable and sufficient number of data. 

Fig. 1 presents the two ways of neural network modeling applied to free 

radical polymerization of styrene. 
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Fig. 1 ‒ Neural network modeling procedures.  

 
NeuroSolutions, a dedicated software, is used for developing and testing 

feed-forward neural networks of different structures (number of hidden layers 

and neurons). 
 

3. Results and Discussion 
 

3.1. Phenomenological Modelling Results 

 

Using a Matlab software program, many simulations were made under 

different reaction conditions, represented by temperature and amount of the 

initiators in the reaction mixture. A single initiator was used: benzoylperoxide 

(POB). 

The properties of the chemical initiator, as well as other constants used 

in simulation of styrene polymerization, are given in Table 1. 

 
Table 1 

Numerical Values for Kinetics of Styrene Polymerization 
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Table 1 

Continuation 
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The meaning of all notations in Table 1 is given in Section 2.1. In 

addition, ktc0 and kp0 represent propagation and termination rate constants in the 

absence of glass and gel effects; 0
dk , 0

0itermk , 
0

0pk , 0
0tck , 0

0tmk  are frequency 

factors; Ed, Eiterm, Ep, Etc, Etm – activation energies; m, p – monomer and 

polymer densities. 
 

 
 

Fig. 2 ‒ The variation in time of monomer conversion obtained using 

 POB as initiator when the temperature is 70ºC.  
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Figs. 2-4 illustrate the variation  in time of monomer conversion, 

numerical and gravimetrical molecular weights obtained using POB as initiator 

when the temperature is 70ºC, for different values of the initial concentration of 

the initiator: 20, 40, 60 mol/m
3
, respectively. 

 

 
Fig. 3 ‒ The variation in time of numerical molecular weight obtained 

using POB as initiator when the temperature is 70ºC. 

 

 
Fig. 4 ‒ The variation in time of gravimetrical molecular weight obtained 

using POB as initiator when the temperature is 70ºC. 

 

A sudden increase of conversion or molecular mass corresponds to the 

gel effect, appearing at different combination of temperature and initiator 

concentration. This is a difficult part to model in the free radical polymerization. 
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Figs. 5-7 show the variation  in time of x, Mn and Mw obtained with 

POB as initiator when the temperature is 120ºC, for different values of the 

initial concentration of the  initiator: 40, 50, 60 mol/m
3
, respectively. 

Some interesting observations can be made from the simulation at 

120C, with chemical decomposition of POB and thermal decomposition of the 

monomer. As can be seen in Fig. 5, the polymerization with POB gives a 

monomer conversion with a maximum value of 60% because of rapid 

consumption of the free radicals (dead – end polymerization). For this, a 

solution would be to add a second slow initiator, for instance 

tertbutylperbenzoate (TBPB) (Curteanu and Bulacovschi, 2003). 

 

 
Fig. 5 ‒ The variation in time of monomer conversion obtained using 

 POB as initiator when the temperature is 120ºC. 

 

 
Fig. 6 ‒ The variation in time of numerical molecular weight obtained using 

POB as initiator when the temperature is 120ºC. 
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Fig. 7 ‒ The variation in time of gravimetrical molecular weight obtained 

 using POB as initiator when the temperature is 120ºC. 

 
3.2. Neural Network Modelling Results 

 

After the simulation data was gathered and processed, a series of neural 

network topologies were developed, trained and tested using NeuroSolution 

software. Initially, a structure combining all three parameters (x, Mn, Mw) was 

considered. However, although general good mean squared error (MSE) and 

correlation (r) values were obtained, when performing a point by point comparison 

between the simulation data and the ANN predictions, it was observed that for Mn 

and Mw, relatively high differences are present (Figs. 8 and 9). 

 

 
 

Fig. 8 ‒ Comparison between simulation data and ANN predicted for some 

 points from the testing set in case of the Mn output. 



78                                            Luciana Ghiba et al. 
 

 

 

 
 

Fig. 9 ‒ Comparison between simulation data and ANN predicted for some points from 

the testing set in case of the Mw output. 

 
Consequently, the next step consisted in determining individual models 

for each output. In this case, multiple structures were tested (Table 2). 

 
Table 2 

 Topologies Tested for Each Output 

x Mn Mw 

Topology r Topology r Topology r 

4:50:1 0.9834 4:50:1 0.9756 4:30:1 0.8748 

4:40:1 0.9834 4:40:1 0.9760 4:40:1 0.8698 

4:30:1 0.9847 4:30:1 0.9798 4:50:1 0.8997 

4:20:1 0.9827 4:20:1 0.9743 4:60:1 0.8797 

4:25:1 0.9830 4:25:1 0.9784 4:55:1 0.8857 

4:40:25:1 0.9929 4:40:25:1 0.9878 4:40:25:1 0.9362 

4:30:10:1 0.9932 4:30:10:1 0.9821 4:30:15:1 0.9260 

4:25:10:1 0.9855 4:25:10:1 0.9851 4:40:20:1 0.9434 

4:30:5:1 0.9909 4:30:5:1 0.9784 4:40:15:1 0.9255 

4:25:15:1 0.9869 4:25:15:1 0.9802 4:25:10:1 0.8954 

4:30:15:1 0.9880 4:30:15:1 0.9756 ‒ ‒ 

 
In Table 2, the bold, grey coloring indicates the best solutions (highest r) 

obtained with one and two hidden layers. A point by point comparison between 

simulated and ANN predictions for the three outputs is presented in Figs. 10-12 

for a series of production data (data that was not included in the training/testing 

phases). 
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Fig. 10 ‒ Comparison between simulation data and ANN predicted for some 

 points from the production set in case of the x output. 

 

 
 

Fig. 11 ‒ Comparison between simulation data and ANN predicted for some 

 points from the production set in case of the Mn output. 

 

 
 

Fig. 12 ‒ Comparison between simulation data and ANN predicted for some 

 points from the production set in case of the Mw output. 
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As it can be observed from Figs. 10-12, the predictions obtained with 

the two hidden layer ANN models are closer to the simulation data, fact which 

indicates that they better capture the process dynamic and can be used to replace 

the simulations in various conditions. 

 

4. Conclusions 

 

The bulk/suspension polymerization of styrene was simulated 

employing a model which considers the chemical and thermal initiation, gel and 

glass effects. For reactions carried out below 100C, only the decomposition of 

initiators is considered, and over 100C, both initiation mechanisms, decomposition 

of initiators and monomer decomposition.  

The theoretical approach of this paper emphasizes the influence of some 

parameters on polymerization process: amount of initiators, time and 

temperature. Many and important information can be obtained carrying out the 

simulations under a large domain of different reaction conditions. Thus, the 

necessary number of experiments becomes smaller because they are chosen 

depending on simulation results. 

The artificial neural network employed in this work focused on two 

distinct approaches: modelling all the outputs using a single model and 

individual models for each output. The first approach tested (a single model for 

all outputs) provided unacceptable results from the performance point of view, 

fact which lead to the application of the second approach, where different 

configurations were tested: with one and two hidden layers and different 

number of intermediate neurons. For all the three outputs, the ANN with two 

hidden layers proved to be the best, with a correlation in the range of 0.94-0.99. 

A future study will continue this approach with styrene polymerization 

under nonisothermal and semi-discontinuous reaction conditions, in addition 

with model improvement through hybridization (the combination of 

phenomenological with empirical models).  
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MODELAREA POLIMERIZĂRII  

RADICALICE A STIRENULUI FOLOSIND REȚELE 

 NEURONALE ARTIFICIALE 

 

(Rezumat) 

 

În această lucrare, modelarea polimerizării radicalice a stirenului se realizează 

utilizând două abordări: fenomenologică și empirică. În ultimul caz, se utilizează rețele 

neuronale artificiale, aplicând două strategii de lucru. În primul rând, a fost determinat 

un singur model cu trei ieșiri (conversia monomerului, mase moleculare numerice și 

mase moleculare gravimetrice) pe baza timpului, temperaturii și concentrației inițiale a 

inițiatorului. Datorită rezultatelor inacceptabile ale performanțelor pentru masele 

moleculare, se dezvoltă o a doua strategie, modelarea fiecărei ieșiri, separat, în funcție 

de cele trei intrări. Diferite topologii ale rețelelor neuronale artificiale au fost testate, 

rețeaua cu două straturi ascunse având cele mai bune rezultate.  
 


