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Abstract. The elimination of organic pollutants from water poses a 

considerable challenge in environmental remediation in this study, the potential of 

ZnS-ZnO semiconductors as efficient photocatalysts for degrading aqueous 

solutions of ceftriaxone (CEF) was investigated in a mini-UV reactor. The ZnS-

ZnO heterostructures were synthesized via the hydrothermal method and 

characterized using analytical techniques (SEM, FTIR), demonstrating 

considerable photocatalytic activity (UV-Vis monitoring), with degradation of 

CEF occurring within a relatively short period of time. 
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1. Introduction 

 

The quality of human life directly depends on water resources, in terms 

of water availability and quality. The presence of potentially toxic substances in 

water intended for human consumption is responsible for a number of serious 

diseases. Antibiotics have become indispensable in combating bacterial 

infections, but their extensive use has led to an unintended consequence—their 

persistent presence in wastewater. When humans and animals ingest these 

pharmaceuticals, a significant portion remains unmetabolized and is excreted into 

the sewage systems. Antibiotics in wastewater come from various sources, 

including pharmaceutical manufacturing, hospital effluent, agricultural runoff, 

and insufficiently treated urban sewage (Danner et al., 2019; Yang et al., 2022). 

These contaminants create a selective pressure on the microbial communities, 

nudging them towards resistance. The presence of non-metabolized antibiotics in 

wastewater is particularly concerning because these compounds enter aquatic 

ecosystems with their biological activity intact, posing a significant risk to 

environmental and public health. Non-metabolized antibiotics are those that pass-

through organism, either human or animal, without being substantially altered by 

metabolic processes. As a result, they maintain their antimicrobial properties and, 

when discharged into water systems, can affect non-target organisms and 

contribute to the spread of antibiotic resistance. The environmental persistence of 

non-metabolized antibiotics can lead to prolonged exposure of aquatic organisms 

to low levels of these compounds. This exposure creates selective pressure that 

favours the survival of microbes with resistance genes, which can spread across 

different bacterial populations through horizontal gene transfer. Consequently, 

there is a critical need to address the issue of non-metabolized antibiotics in 

wastewater streams to prevent long-term ecological disturbances and preserve the 

efficacy of antibiotics against pathogenic bacteria. The wastewater treatment 

plants often are not equipped to fully remove these compounds, leading to the 

dissemination of antibiotics into aquatic environments. 

Eliminating unmetabolized antibiotics or other organic pollutants is not 

a simple task and requires sophisticated and expensive removal processes, which 

often leads to the impossibility of treatment. The detection of antibiotics in both 

wastewater and drinking water, albeit in trace amounts, raises significant 

concerns regarding environmental safety (Dan et al., 2020; Wang et al., 2021). 

Unmetabolized antibiotics and their metabolites can be removed from wastewater 

by using several technologies and treatment methods as biological treatments, 

adsorption on different types of adsorbents, filtration, advanced oxidation 

processes (AOP): involves the use of a combination of strong oxidants and UV 

radiation to disintegrate organic substances (Danner et al., 2019; Hosny and 
Hargreaves, 2024; Liu et al., 2023; Nordin et al., 2023; Rizkallah et al., 2023; 

Yang et al., 2022). 
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In general, the method or combination of methods used to remove antibiotics 

from wastewater depends on the type of antibiotic present, the concentration and 

volume of wastewater, costs and other specific factors. In this context, 

heterogeneous photocatalysis has gained ground as a technology that allows the 

removal or at least transformation of these elements into less toxic forms, 

contributing to the improvement of water quality. 

It consists of using a photocatalyst, usually a semiconductor, which, 

when exposed to light radiation, is able to promote oxidation / reduction reactions 

that can be used to remove pollutants. It is a relatively simple process in its 

operational requirements, which due to its heterogeneous nature allows the 

recovery and reuse of the photocatalyst, reducing costs. 

In addition, this method has the advantage of being a more 

environmentally friendly and efficient alternative to conventional wastewater 

treatment methods such as biological treatment or chlorine treatment (Tran et al., 

2023, Guo et al., 2023, Zhang et al., 2023, Zhang et al, 2021; Malato et al., 2016; 

Inamuddin et al., 2021; Murugesan et al., 2019). 

Among the various treatment methods, the advent of hybrid 

semiconductor photocatalysts, has shown promising potential in degrading 

antibiotics and mitigating the risk they pose to both the environment and public 

health. ZnO and ZnS are two semiconductor materials that have been extensively 

studied for their photocatalytic activities due to their favourable bandgaps, which 

enable the absorption of a broad range of the ultraviolet and visible light 

spectrum, making them highly effective for photocatalytic degradation. When 

combined, the hybrid ZnO-ZnS structure benefits from a type-II heterojunction 

photocatalytic system. The unique band alignment between ZnO and ZnS 

facilitates the efficient separation of photo-generated charge carriers‒electrons 

and holes‒which is paramount in the acceleration of photocatalytic reactions. The 

physical and chemical properties of ZnO-ZnS photocatalysts can be fine-tuned 

by controlling the compositional ratios and synthesis methods, such as sol-gel, 

hydrothermal, and co-precipitation approaches, among others. Tailoring the 

morphology and surface characteristics of these nanocomposites extends their 

range of practical applications, including the degradation of numerous antibiotics 

commonly found in wastewater (Batterjee et al. 2022; Khan et al., 2022; 

Mohamed et al., 2023; Siwinska-Ciesielczyk et al., 2021). Insights into the 

reactivity of ZnO-ZnS photocatalysts reveal that they can degrade a broad 

spectrum of antibiotics, from tetracyclines to fluoroquinolones, through various 

oxidative processes (Chankhanittha et al., 2023). 

 

2. Experimental 

 

Materials 

Thiourea ((NH4)2CS), Zinc acetate dihydrate (Zn(CH3COO)2∙2H2O), 

Ceftriaxone disodium salt hemi(heptahydrate) (C18H16N8Na2O7S3·3.5H2O) and 
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Poly(vinyl alcohol) were purchased from Sigma-Aldrich and used without further 

purification. For all experiments bidistilled water was used.  

ZnO nanoparticles synthesis  

For the synthesis of ZnO, we used a simple way, starting from zinc 

acetate dihydrate, which was grinded for 20 minutes in an agate mojar, then it 

was calcined in air, at 450°C, for 3 hours. (Rosman et al., 2018), as is shown in 

Eq. (1). 

(CH3COO)2Zn ∙ 2H2O
450℃
→   ZnO + 2CH3COOH + H2O  (1) 

 

ZnS nanoparticles synthesis 

In this method ZnS NPs were prepared by a hydrothermal reaction 

between Zn(CH3COO)2∙2H2O as Zn2+ source, (NH4)2CS as S2- source and PVA 

as capping surfactant and dispersing agent. Typically, 0.05 mole of 

Zn(CH3COO)2 2H2O was dissolved in 50 mL distilled water and 0.5 mL of PVA 

(5% wt) was added to that. Then, the stoichiometric (NH4)2CS (10-3Mol/L) was 

added, drop by drop, under continuous stirring, at 90°C till the colour changes 

from transparent to fluorescent white-yellow.  

 

ZnO-ZnS hybrid photocatalyst 

ZnO nanoparticles, previously synthesized, are added to above prepared 

suspension. The obtained precipitate was centrifuged at 6000 rpm for 10 min, and 

the collected particles were washed three times with bi-distilled water, in order to 

remove the unreacted metals traces and finally, dried at 110°C, for 10 h. The 

discharged S2- and Zn2+ will react together to form ZnS which growth in presence 

of the PVA as capping agent, resulted in the ZnS-ZnO NPs formation (Eq. (2), (3)). 

 

(CH3COO)2Zn ∙ 2H2O → Zn
2+ + 2(CH3COO)

− + 2H2O    (2) 

 

(NH2)2CS + Zn
2+ + 2(CH3COO)

− + H2O → ZnS + 2CH3COOH + (NH2)2CO   (3) 

 

Acetic acid and urea are water soluble products and have been eliminated 

by repeated washing with bi-distilled water. The schematic illustration of 

hydrothermal ZnS-ZnO heterojunction hydrothermal synthesis is indicated in 

Fig. 1.  

 
Fig. 1 ‒ Schematic illustration of ZnS-ZnO heterojunction hydrothermal synthesis. 
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Experimental procedure  

The setup employed for the photocatalytic experiments comprises a 

Phillips 18W UV radiation source situated at the upper section of a sealed dark 

chamber, with reaction vessels positioned atop magnetic stirrers, as illustrated in 

the diagram below (Fig. 2). The UV lamp is positioned 2 cm away from the 

solutions being irradiated. The intensity of UV radiation was assessed using a 

Hamamatsu C9536-01 meter equipped with an H9958 detector designed for 

wavelengths ranging from 310 to 380 nm. The measurement scale spans from 

1µW/cm² to 100 mW/cm², yielding a recorded intensity of 2.1 W/m². 

 

 
 

Fig. 2 ‒ Experimental photocatalysis set-up. 
 

Variable amounts of photocatalytic ZnS-ZnO were introduced into 50 mL 

aqueous antibiotic solutions (different concentrations). The reaction systems thus 

prepared were stirred magnetically for 30 minutes in the dark to establish the 

adsorption-desorption balance between the pollutant dye and the photocatalyst 

surface. Before starting the stirring and after the 30 minutes of stirring, the 

absorbance of the antibiotic was measured by the spectrophotometric method, at 

the specific wavelengths specified in Table 1.  
 

Table 1 

 Characteristics of organic compounds subject to degradation 

Antibiotic  The chemical structure  Molecular 

 formula 

λmax  

nm 

Molar 

mass 

g/mol  

Ceftriaxone 

CEF  

 

C18H16N8Na2O7S3·3.5H2O 234, 

275 

661.60  

 

The degradation rate was determined spectrophotometrically based on the 

residual concentration. Similar experiments were conducted by adjusting the 

catalyst quantity (0.25-0.75g/L) for initial concentration of antibiotic 10 mg/L.  

The percentage of photodegraded CEF was calculated with the following 

formula (Eq. (4)). 
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% 𝐷 = 100𝑥(𝐴0 − 𝐴𝑡)/𝐴0   (4) 
 

Where A0 is the initial absorbance and At is the absorbance at some time t (for 

λ=275nm).  
 

3. Results and discussion 

 

The SEM analysis revealed the characteristics of the synthesized ZnO, 

with the results presented in Fig. 3. The sample exhibited polydispersity, 

characterized by agglomerations measuring roughly 0.1 x 0.2 x 0.4 μm. 

Additionally, each prismatic agglomeration comprised nanometer-sized particles. 
 

 
Fig. 3 − SEM microscopy images of ZnO nanoparticles. 

 

FTIR characteristic of ZnS particles 

Many inorganic compounds containing simple anions (oxides, sulphides) 

are transparent in the IR domain and cannot be analysed by this technique. FTIR 

analysis was performed due to the use of PVA as a structure directing agent. The 

surface chemistry of the synthesized ZnS nanoparticles were analysed using 

Fourier- Transform Infrared Spectroscopy in the range of 4000–400 cm−1 (Fig. 4). 
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Fig. 4 ‒ FTIR spectra of ZnS sample. 
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The peaks observed at 473 and 670 cm-1 are the characteristic of the ZnS 

symmetric bending vibration (Tadesse et al., 2023; Yun et al., 2018). The organic 

phase (PVA) is responsible from 1030 cm-1 (secondary OH), 1424 cm-1 (vinyl 

CH in plane blend, δCH2), 2855 cm-1 νsCH2, 2920 cm-1 νaCH3 asymmetric /symmetric 

stretch (Nakamoto, 1997), the band at around 1600 cm−1 is due the C-O stretching 

from PVA molecule (Mansur et al., 2008) and the broad band at 3415 cm-1 is 

attributed to the polymeric OH stretch (νOH) from the intermolecular and 

intramolecular hydrogen bonds. 

 

Photocatalytic test 

Figure 5 shows the evolution of (CEF UV-Vis +UV+0.5 g/L ZnS-ZnO) 

system absorption spectra in time. The results showed that the intensity of the 

representative peaks for CEF decreases after irradiation begins. 
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Fig. 5 ‒ The evolution of CEF (10 mg/L) UV-Vis absorption spectra in time. 

 
The effect of photocatalyst dosage was studied for concentrations of 0.25, 

0.5 and 0.75 g/L, using a solution containing 10 mg/L CEF for time exposure of 

180 min. The results are shown in Fig. 6. Analysing the values of the absorbance 

(λmax = 275 nm) for the studied systems, it is observed that its decrease is 

insignificant for the cases where the CEF is irradiated only with UV or is only in 

the presence of the photocatalyst. But the combined ZnS-ZnO-UV system led to 

appreciable decreases in absorbance, the best values being for the high dose of 

photocatalyst (0.75 g/L). 
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Fig. 6 ‒ Plots showing CEF photodegradation versus time by ZnS-ZnO (different 

photocatalyst concentration). 

 

The photo-degradation process exhibits a consistent rise with increasing 

photocatalyst concentration, as is shown in Fig. 7. 
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Fig. 7 ‒ A histogram showing the comparison of CEF photodegradation efficiencies  
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There are subtle disparities in the photocatalytic performance of ZnS-

ZnO depending on the dosage employed. For instance, at a concentration of 

0.25 g/L ZnS-ZnO, the degradation efficiency reaches 63.36%, increasing to 

82.46% for 0.5 g/L, and 83.79% for 0.75 g/L ZnS-ZnO. Although the 

degradation efficiency values show a slight uptick with higher ZnS-ZnO doses, 

a concentration of 0.25 g ZnS-ZnO/L solution, was selected. This decision is 

grounded on economic and environmental considerations, as the addition of 

larger quantities of ZnS-ZnO is not justified. 

 

4. Conclusions 

 

A successful hydrothermal synthesis method was utilized to produce the 

ZnS-ZnO photocatalyst, employing PVA as a templating agent. The FTIR 

spectrum exhibited characteristic vibrational modes indicative of ZnS and ZnO 

composites. The ZnS-ZnO photocatalyst demonstrated a maximum 

photodegradation efficiency of 83.8%, underscoring its potential as an effective 

material for photocatalytic degradation. These findings suggest that the 

developed ZnS-ZnO composites could find utility across diverse applications, 

notably in the removal of detrimental organic compounds from wastewater. 
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ELIMINAREA FOTOCATALITICĂ A CEFTRIAXONEI DIN APELE UZATE 

FOLOSIND MATERIALE FOTOCATALITICE HIBRIDE ZnS-ZnO 

 

(Rezumat) 

 

Eliminarea poluanților organici din apă este o provocare semnificativă în 

remedierea mediului. În acest studiu, potențialul semiconductorilor ZnS-ZnO ca 

fotocatalizatori eficienți pentru degradarea soluțiilor apoase de ceftriaxonă (CEF) a fost 

investigat într-un mini-reactor UV. Heterostructurile ZnS-ZnO au fost sintetizate prin metoda 

hidrotermală și caracterizate prin tehnici analitice (SEM, FTIR), demonstrând o activitate 

fotocatalitică considerabilă (monitorizată UV-Vis), degradarea CEF realizându-se într-o 

perioadă de timp relativ scurtă. 


